Text Documents Classification Using Word Intersections

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of text documents

The exponential growth of the internet has led to a great deal of interest in developing useful and efficient tools and software to assist users in searching the Web. Document retrieval, categorization, routing and filtering can all be formulated as classification problems. However, the complexity of natural languages and the extremely high dimensionality of the feature space of documents have ...

متن کامل

Text Classification Using Word-Based PPM Models

Text classification is one of the most actual among the natural language processing problems. In this paper the application of word-based PPM (Prediction by Partial Matching) model for automatic content-based text classification is described. Our main idea is that words and especially word combinations are more relevant features for many text classification tasks. Key-words for a document in mo...

متن کامل

Text Classification of Formatted Text Documents

We describe a multiclass text classification system for formatted text messages contained in the Rich Text Format fields of a structured database of military documents. This system uses a Part-Of–Speech tagger and a RuleBased Classifier to classify 80 different types of formatted messages.

متن کامل

Meta-Classification using SVM Classifiers for Text Documents

Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a metaclassifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers c...

متن کامل

Text Classification from Labeled and Unlabeled Documents Using

This paper shows that the accuracy of learned text classi ers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classi cation problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. We introduce an algorithm for learning from lab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Engineering and Technology

سال: 2014

ISSN: 1793-8236

DOI: 10.7763/ijet.2014.v6.678